题目让你求:

i=1nlcm(i,j)\sum_{i = 1}^n \operatorname{lcm}(i, j)

推式子:

=i=1ni,ngcd(i,n)= \sum_{i = 1}^n \frac{i, n}{\gcd(i, n)}

=ni=1nigcd(i,n)= n \sum_{i = 1}^n \frac{i}{\gcd(i, n)}

=ndni=1nid[gcd(i,n)=d]= n \sum_{d | n} \sum_{i = 1}^{n} \frac{i}{d}[\gcd(i, n)=d]

=ndni=1n/di[gcd(id,n)=d]= n \sum_{d | n} \sum_{i = 1}^{n/d} i[\gcd(id, n)=d]

=ndni=1n/di[gcd(i,nd)=1]= n \sum_{d | n} \sum_{i = 1}^{n/d} i[\gcd(i, \frac{n}{d})=1]

=ndni=1di[gcd(i,d)=1]= n \sum_{d | n} \sum_{i = 1}^{d} i[\gcd(i, d)=1]

=ndndϕ(d)2= n \sum_{d | n} \frac{d\phi(d)}{2}

到这里就直接可以预处理每个nn的约数dϕ(d)2\displaystyle \frac{d\phi(d)}{2}值和了。

代码不开ios加速会TLE。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include<bits/stdc++.h>
using namespace std;
#define int long long
vector<int> phisieve(int n)
{
vector<int> primes, phi(n + 1);
vector<bool> vis(n + 1, 0);
phi[1] = 1, phi[0] = 0;
vis[0] = vis[1] = 1;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
phi[i] = i - 1;
primes.push_back(i);
}
for (int j = 0; j < primes.size() && i * primes[j] <= n; j++) {
vis[i * primes[j]] = 1;
if (i % primes[j]) {
phi[i * primes[j]] = phi[i] * (primes[j] - 1);
} else {
phi[i * primes[j]] = phi[i] * primes[j];
break;
}
}
}
return phi;
}
vector<int> phi;
vector<int> v(1e6 + 10, 0);
void solve()
{
int n;
cin >> n;
cout << n * v[n] << '\n';
}
signed main()
{
ios::sync_with_stdio();
cin.tie(0);
cout.tie(0);
phi = phisieve(1e6 + 10);
for (int i = 1; i <= 1e6; i++) {
for (int j = 1; i * j <= 1e6; j++) {
v[i * j] += (i == 1 ? 1 : i * phi[i] / 2);
}
}
int T;
cin >> T;
while (T--) {
solve();
}
return 0;
}